
Thread	kotlin	example

http://gluvoob.com/c3?utm_term=thread+kotlin+example


Kotlin	thread	join	example.	Android	kotlin	thread	example.	Kotlin	thread	local	example.	Kotlin	multi	thread	example.	Kotlin	thread	runnable	example.	Kotlin	thread	sleep	example.	Kotlin	background	thread	example.	Kotlin	thread	pool	example.

this	article,	we	are	going	to	have	a	trial	and	error	look	at	two	different	implementations	of	Coroutines	also	known	as	Continuations	within	the	JVM.	These	are	Java	Virtual	Threads	which	are	a	part	of	Project	Loom	and	Kotlin	Coroutines	provided	as	DSLs	to	run	on	the	JVM.	Because	of	the	nature	of	this	article,	it	will	be	subject	to	frequent	reviews.	The
supporting	code	is	located	on	GitHub.A	bit	of	history	recent	years,	if	you	work	around	the	JVM,	you	must	have	noticed	that	a	new	player	is	in	town	in	the	JVM	world.	Enter	Kotlin.	Long	story	short,	Kotlin	started	within	JetBrains	R&D	Department,	being	named	after	the	Kotlin	island	in	the	neighborhood	of	St.	Petersburg.This	is	the	short	Kotlin	story	so
far.	But	in	order	to	understand	where	we	are	this	year	(2022)	and	how	far	we’ve	come,	we	need	to	go	down	memory	lane	and	understand	how	Java	has	developed	and	when	and	how	other	languages	derived	from	Java	have	flourished.	This	way	we	can	have	a	better	picture	and	draw	better-informed	conclusions	on	it.Short	Chronology	of
Java/Kotlin/Scalaefore	we	continue,	we	have	to	honor	the	responsible	people	that	have,	according	to	extended	documentation,	started	all	of	this	JVM	revolution.	James	Gosling	is	by	many	considered	the	inventor	of	Java	and	the	JVM.	Without	him,	nothing	that	has	been	invented	afterward,	on	top	of	the	JVM,	would	be	possible.	In	the	same	way,	Martin
Odersky	is	pretty	much	the	inventor	of	Scala.	Finally,	for	Kotlin,	we	can	only	say	that	the	team	leader	of	the	JetBrains	team	responsible	for	further	developments	is	Dmitry	Jemerov.he	table	above	is	a	bit	of	a	short	sketch	consolidating	major	highlights	in	the	history	of	three	languages	that	share	a	common	ecosystem,	which	is	the	Java	Virtual	Machine.
Java	exists	since	before	1995,	Scala	since	2001,	and	Kotlin	since	2010.	Java	is	the	oldest	JVM	language	and	the	newest	is	Kotlin.	Java	started	at	least	15	years	before	the	early	beginnings	of	Kotlin	and	Scala	started	9	years	before	Kotlin.	couldn't	find	precisely	where,	but	examining	the	commits	for	project	Loom	I	could	see	that	the	first	commit
happened	in	2007.	What	this	tells	us	is	that	it	is	very	likely	that	the	idea	of	Loom	started	around	this	year.	Loom	is	a	project,	that	pretty	much	like	coroutines	in	Kotlin,	focuses	on	making	maximum	usage	of	system	threads	by	fragmenting	them	into	separate	independent	processes.	Loom	calls	these	processes	virtual	threads.	In	Kotlin	an	experimental
release	supporting	this	same	idea	with	coroutines	was	released	in	2018.	Project	Loom	in	Java	is	scheduled	to	be	released	in	2022.	regards	to	Kotlin,	is	quite	hard	to	pinpoint	what	exactly	was	the	motivation	to	create	a	new	language.	The	best	I	can	find	is	that	“new	features	needed	to	be	added”.	In	this	article,	I	want	to	share	with	you	what	I	have
found	about	Kotlin	Coroutines	and	Java	Virtual	Threads	and	then	reveal	a	great	conclusion	I	came	up	with.	myself	have	never	been	a	part	of	the	Java	Loom	Team	nor	have	I	been	a	part	of	the	Kotlin	Coroutines	team.	I	have	done	this	article	on	the	basis	of	the	source	code	information,	international	conference	videos,	and	papers.ut	before	we	continue,
coroutines	were	invented	a	long	time	ago,	but,	if	you	are	not	aware	of	it,	here	is	a	great	revelation.	They	are	indeed	very	old,	and	they	are	actually	older	than	1958.	This	is	only	the	year	where	this	term	was	coined	by	Donald	Knuth	and	Melvin	Conway.	Here,	people	have	created	their	own	implementations	of	this,	for	example,	this	one	by
codecop.Motivationoftware	engineering	has	changed	through	the	years	and	undoubtedly	everyone	strives	to	make	everything	better.	We	want	it	to	be	easier	to	create	software	and	make	our	code	work.	To	do	that,	we	have	created	syntaxes	and	semantics	that	enable	us	to	develop	with	an	increasing	level	of	simplicity.	When	Kotlin	came	to	the	scene	I
was	almost	immediately	sold	out	to	the	idea	of	it	being	superior	to	Java	on	many	levels.	That’s	what	the	Kotlin	community	mostly	promotes.	A	few	months	into	it	I	realized	a	few	things	that	defeated	the	reason	for	my	excitement	about	it.	As	time	went	by	I	got	more	and	more	of	this	idea	that	Kotlin	is	just	another	language	and	that	may	be	the	true	thing
that	makes	it	exciting	is	that	it	is	different.	Something	new	breaks	up	the	routine	and	makes	room	for	creativity.	One	thing	I	didn’t	change	my	mind	about,	is	that	Kotlin,	done	the	right	way,	can	produce	code	that	is	much	more	beautiful	than	Java.	But	beauty	is	something	I	don’t	want	to	discuss	in	this	article.	What	this	article	really	is	about	is
performance.	We	are	not	going	to	discuss	Kotlin	and	Java	alone.	We	are	going	to	discuss	two	implementations	that	make	use	of	System	Threads	and	a	very	old	concept	called	coroutines.	In	Java,	this	is	being	called	virtual	threads	in	project	Loom	and	in	Kotlin	this	is	being	called…	well…	coroutines.	As	we	go	along	in	the	code	on	both	sides,	we’ll	make
pit-stops	and	compare	code	against	each	other	and	see	the	differences.	But	first,	let’s	go	into	a	bit	of	theory	to	understand	exactly	what	are	we	talking	about,	discuss	why	was	this	not	a	revolution	before,	and	why	it	has	taken	so	much	time	to	get	languages	to	develop	interfaces	and	semantics	to	be	able	to	use	system	threads	more
efficiently.Coroutines,	what	are	they?	we	take	the	literal	meaning	of	coroutines,	purely	on	a	semantic	level,	we	get	Co	and	Routines.	So,	a	routine	is	just	some	instruction	that	runs.	A	coroutine	is	something	that	runs	along.	Running	along,	in	this	case,	means	literally	suspending	the	original	routine	and	allowing	a	completely	different	routine	to	start
and	then	resume	the	original	routine.	illustrate	this,	I’ve	gone	back	to	1985,	and	with	the	help	of	the	internet,	I’ve	created	a	small	program	in	C++	that	shows	some	instructions	about	creating	a	table	with	Epoxy	(don’t	follow	these	instructions	if	you	want	to	create	a	real	Epoxy	table,	creating	tables	with	epoxy	require	safety	gear	and	protection,	so	get
informed	first).	Why	C++?	Well,	why	not?	And	further,	I	think	it	is	very	important	to	start	out	with	a	neutral	point.	If	we	get	these	basics	right,	then	we	are	on	a	roll!	So	this	is	the	main	program:Main	Epoxy	table	programo,	we	have	a	bunch	of	cases	(10	to	be	exact)	and	for	now,	this	piece	of	code	doesn’t	seem	to	show	a	lot.	We	do	have	something	that
should	get	your	attention	at	the	moment	and	that	is	pthread_self().	Another	thing	is	processes(1,11),	which	are	included	in	the	validation	check	of	the	for-loop.	Let’s	dive	into	this	method:Processeso,	here,	we	have	a	strange	switch-case.	We	are	assigning	1	to	the	state	within	the	case	condition	of	0.	This	causes	the	main	thread	to	split,	before
returning.	It	doesn’t	technically	split	into	2,	but	it	does	suspend	on	runtime,	to	allow	the	other	to	start.	This	means	that	when	the	routine	hits	return	i,	it	will	suspend	itself	and	the	thread	will	first	run	whatever	is	in	the	main	for-loop	and	only	then	it	will	finish	running	what’s	on	case	1.	Looking	at	this	in	C++,	it	may	seem	highly	counterintuitive,	but	if
we	run	the	code,	then	we	see	this	phenomenon	taking	place	and	we	can	also	see,	that	although	the	main	thread	has	suspended	and	resumed	different	routines,	they	are	all	hanging	on	the	same	thread:Deep	code	analysis	this	is	essentially	what	a	coroutine	is.	In	this	C++	example,	everything	is	run	asynchronously.	There	are	also	many	ways	to
implement	a	coroutine.	What	project	Loom	and	Kotlin	Coroutines	saw	as	a	gold	mine	in	the	second	half	of	the	2000s	decade,	was	to	explore	this	and	implement	coroutines	in	a	sort	of	asynchronous	way.	Both	languages	have	evolved,	and	both	still	have	experimental	features	running	on	their	respective	implementations.	However,	Java	is	still	in	the	EAB
(Early	Access	Build)	stage,	although	it	has	started	its	developments	much	earlier	in	the	second	half	of	this	decade.Java	virtual	threads	order	to	discuss	Java	Virtual	Threads,	we	have	to	get	familiar	with	a	few	basic	concepts:	Fibers,	Continuations,	and	of	course	Virtual	Threads.Fibers:	To	be	very	clear,	fiber	is	just	another	way	to	refer	to	Virtual
Threads.	There	is	nothing	magic	about	itVirtual	Threads:	They	have	been	named	this	way	to	better	refer	to	their	actual	behavior.	For	the	developer,	there	is	no	apparent	difference	between	a	Thread	(Platform	or	System	thread)	and	a	Virtual	Thread	(Something	run	by	the	carrier	thread	that	executes	independently	allowing	more	processes	to
run)Carrier	Thread:	A	term	that	in	the	first	instance	seems	to	be	used	by	the	hip	and	happening	and	looks	like	just	another	way	to	refer	to	a	Platform	Thread	or	System	Thread.	However,	it	does	have	a	much	more	important	role	than	that.	A	Carrier	Thread	is	where	one	Virtual	Thread	executes.	This	becomes	more	visible	when	we	look	into	the	code,
which	we	will	further	down	below.Continuation:	Fibers	and	Virtual	Threads	are	continuations.	A	continuation	is	just	something	that	allows	us	to	continue	after	yielding	a	result.	This	is	the	very	low	level	of	all	virtual	threads	and	how	they	work.	We	have	seen	before	how	coroutines	work.	This	is	exactly	how	continuations	work.	In	fact,	coroutines	are
just	another	name	for	continuations.	In	the	code	in	the	example	at	the	beginning	of	this	article,	there	would	be	two	virtual	threads.	The	one	at	the	start	of	the	execution	and	another	when	we	start	with	the	text:	“Ending	step”.What	are	Java	Virtual	Threads?	this	point,	and	from	the	above,	I	think	you	are	getting	a	very	clear	idea	of	what	this	whole
continuation	and	coroutines	are	about.	The	same	thing	right?	The	theory	seems	to	be	the	same,	but	the	implementation	differs.	At	this	stage	let's	have	a	look	at	some	of	the	highlights	of	the	implementation	of	Virtual	Threads	(at	least	in	my	view):Starting	a	Virtual	Thread	in	Loom	JDK19	this	point,	nothing	happens.	We	receive	a	plain	runnable	and	we
get	into	the	method.	We	are	executing	inside	the	JDK19	already	and	this	code	is	only	JDK19	code.	Once	there,	Loom	creates	a	VirtualThread	with	our	task	as	a	parameter	and	starts	it.	When	we	start	a	virtual	thread	this	way,	we	are	doing	so	by	making	the	first	two	parameters	null,	the	third	0,	and	the	fourth	one	is	our	task.	Let’s	dive	into	the
VirtualThread	first	and	see	if	we	see	signs	of	anything	remotely	similar	to	what	we’ve	seen	and	learned	about	what	a	continuation	is:VirtualThread	Constructor	for	the	static	call	in	Loom	JDK	19	this	case	what	this	means	is	that	we	create	a	virtual	thread	without	a	scheduler,	without	a	name,	and	0	characteristics.	And	of	course,	what	does	this	all
mean?	Maybe	here	we	can	skip	a	few	steps,	but	the	thread	initialization	will	assign	an	id	to	it	and	no	characteristics.	Since	we	don’t	give	it	a	name,	our	thread	will	not	be	identifiable	with	a	name.	No	by	default	at	least.	Before	launching	our	thread,	we	get	a	scheduler.	In	this	part,	we	are	coming	against	some	code	that	ensures	that	we	get	either	an
appropriate	scheduler	from	the	System	Thread	or	an	appropriate	thread	from	the	VirtualThread.	We	seem	to	have	two	types	of	schedulers.	One	for	the	Virtual	Thread	and	another	for	the	System	Thread.	These	look	actually	to	be	reused.	The	new	scheduler	is	only	assigned	if	there	is	no	scheduler	given	in	the	constructor	and	it	is	assigned	on	the	basis
of	the	parent	thread,	which	is	the	current	thread.	Once	we	have	the	scheduler,	we	can	finally	create	a	continuation	(VThreadContinuation)	with	the	current	VirtualThread	and	we	pass	the	runnable	task	we	have	given.	Finally,	we	assign	the	runContinuation	property	with	the	runContinuation	lambda	in	order	to	be	able	to	execute	it	later.	now	we	have
created	a	Virtual	Thread	with	the	scheduler	of	the	Platform	Thread,	no	name,	one	id,	and	0	characteristics	and	we	have	assigned	a	continuation	to	it	and	have	assigned	the	runContinuation	property	with	the	runContinuation	lambda.	The	scheduler	we	have	just	created	is	a	ForkJoinPool,	which	is	created	by	default	with	a	parallelisation	level	equivalent
to	the	number	of	CPU’s	provided	by	the	machine	and	a	maximum	worker	pool	of	256.From	here	onwards,	it	becomes	quite	complicated	to	describe	what	happens,	given	that	this	involves	quite	a	lot	of	native	code	calls,	which	I	do	not	know	much	about	and	it	is	irrelevant	for	this	article.	Relevant	for	this	article,	though,	are	the	states	a	virtual	thread
goes	through	in	its	lifecycle.	A	virtual	thread	can	potentially	go	through	the	following	states	(they	are	all	int	values):New	0:	State	on	the	start	of	the	thread.Started	1:	The	virtual	thread	has	started.Runnable	2:	The	thread	is	unmounted	and	this	state	can	be	assigned	to	a	thread	after	it	has	status	Yielding.	The	thread	is	not	running	at	this	time.Running
3:	The	thread	is	running	and	it	is	mountedParking	4:	Starts	disabling	thread	for	scheduling	unless	the	thread	has	a	permit.Parked	5:	The	thread	gets	Parked	after	a	status	Parking	and	after	yielding.	Parked	means,	in	other	words,	waiting	to	be	Scheduled.Pinned	6:	A	thread	gets	pinned,	when	being	delayed	by	a	synchronized	process,	or	performing
some	virtual	thread	unsupported	operation	as	is	the	case	of	some	IO	operations.	Other	IO	operations	are	performed	in	a	non-blocking	way.	More	precisely,	pinning	is	a	way	to	not	allow	a	Virtual	Thread	to	unmount	if	it	is	waiting	for	an	object	that	is	not	available	yet.Yielding	7:	The	thread	gets	unmounted	in	order	to	yield	its	control	of	the	processor
and	then	it	gets	mounted	again	when	it	is	allowed	to	do	so	again.	In	other	words,	it’s	just	returning	the	carrier	Thread.	This	is	also	a	form	of	context	switching.	Sleeping	with	(0)	will	trigger	this	state	immediately.Terminated	99:	Final	state	of	the	Virtual	Thread.	It	will	not	be	used	again.Suspended	256:	A	Virtual	Thread	can	be	suspended	after
unmount.Runnable	Suspended:	The	thread	can	be	runnable	and	suspended.Parked	Suspended:	The	thread	can	be	parked	and	suspended.hen	a	virtual	thread	needs	to	sleep,	it	will	perform	a	delay	operation.	This	requires	something	called	Yielding.	By	doing	Yielding,	we	unmount	the	current	virtual	thread	from	its	current	system	thread	and	yield	its
control	to	another	virtual	thread.If	we	are	performing	a	blocking	operation	and	the	thread	is	pinning,	one	system	thread	will	be	blocked,	but	the	others	won't.	This	means	that,	for	example.	if	you	have	12	cores,	11	will	be	used	to	manage	virtual	threads,	but	only	1	will	be	blocked	waiting.	Blocking	operations	happen	when	using	some	operations	that
are	blocking	in	the	native	code,	for	example	using	synchronized	and	Object.wait()	cause	the	thread	to	be	pinnedContinuation	Yield	in	Loom	JDK19leeping	is	one	way	a	virtual	thread	will	pause	its	execution.	It	has	a	different	behavior	to	another	virtual	thread	that	is	running	on	a	synchronised	code.	For	this	combination	we	need	another	concept	called
parking	in	VirtualThread.java:Parking	in	Loom	JDK19arking	happens	when	we	use	some	kind	of	scheduled	process,	for	example,	a	queue	or	certain	IO	operations.	If	they	cannot	run	and	have	to	block	on	native	processes	as	the	mentioned	synchronised	test-case	they	will	change	state	from	PARKING	to	PINNED:Pinning	in	Loom	JDK19I	provided	an
example	with	test-case	saveWordsParking:An	example	that	induces	PINNING	in	the	JDK19Parked,	however,	is	quite	an	odd	state	and	I	wasn’t	able	to	reproduce	it.	This	has	to	do	with	this	variable	notifyJvmtiEvents,	which	apparently	does	something	about	mounting	and	unmounting	using	native	methods.	According	to	the	literature,	Parked	is	a	status
identifying	a	thread	in	a	scheduler	that	is	not	doing	anything	and	waiting	for	its	turn	to	be	Unparked	and	taken	by	the	Scheduler.	This	should	be	the	case	with	unblocking	operations	that	the	JVM	can	manage,	i.e.	native	independent.Kotlin	coroutines	we	have	seen	before,	coroutines	are	very	similar	to	virtual	threads.	There	is	actually	no	major
difference	between	both	of	them	in	theory.	However,	their	implementations	do	differ.	But	before	delving	into	them	as	we	did	before	with	virtual	threads,	let’s	get	familiar	with	some	of	the	terms	of	the	Kotlin	world:Suspend:	Refers	to	the	act	of	creating	a	coroutine.	A	method	referred	to	as	suspended,	runs	only	in	a	coroutine	context.	This	context	may
be	switched	to	another	during	execution.delay:	A	delay,	is	kind	of	like	sleep,	but	it	will	just	pause	or	suspend	the	running	coroutine	for	as	long	as	we	tell	it	tocoroutine:	Just	like	Virtual	Threads,	a	coroutine	runs	on	a	platform	Thread.	It	can	also	automatically	switch	content.What	are	Kotlin	Coroutinesotlin,	as	you	now	have	probably	figured	out	by	now,
is	still	nothing	more	than	a	simple	DSL	that	enables	some	new	syntax	with	the	goal	to	make	it	easy	for	programmers	to	build	their	applications.	What	this	entails	is	a	bit	of	confusion	when	first	interpreting	the	code	and	the	bytecode.	So,	instead	of	clicking	on	something	like	startVirtualThread	as	in	the	case	of	Java	with	our	favorite	IDE,	in	Kotlin’s	case,
we	need	to	find	a	way	to	enter	the	suspend	code.	We	start	by	looking	at	an	example	of	that	like	this	one:Example	of	a	coroutineepending	on	your	IDE,	you’ll	find	different	ways	to	do	the	following.	In	Intellij,	there	is,	fortunately,	a	Tool	that	allows	us	to	see	the	compiled	bytecode:Kotlin	Tools	In	IntelliJnce	here,	we	can	click	on	the	button	Decompile:The
Decompile	Codend	we	finally	get	this	kind	of	code:retty	messy	right?	Well,	this	is	the	way	that	we	currently,	in	2022,	get	to	decompile	Kotlin	code	into	Java	code.	It’s	really	not	Java	code	per	se,	but	it	gives	us	a	window	into	how	things	are	truly	translated	into	the	JVM.	If	we	want	to	skip	these	steps	and	see	exactly	how	the	code	gets	compiled,	then	you
probably	need	to	go	to	the	command	line.	Just	out	of	curiosity,	if	you	do	go	to	the	command	line	and	list	the	files	in	the	target	directory,	you’ll	see	a	lot	more	files	than	what	you	normally	see	in	compiled	Java	classes:ote	that	we	have	quite	a	few	classes	and	some	with	the	actual	method	names.	Not	very	nice	to	see	but	Kotlin	does	this	because	Kotlin	is	a
layer	on	top	of	Java.	In	other	words,	it’s	a	DSL	(Domain	Service	Language).	This	means	that	we	will	not	be	getting	bytecode	classes	just	like	we	get	from	Java	code.	At	the	end	you	do	not	need	Java	code	because	the	bytecode	is	what’s	being	generated	under	the	hood	at	compile	time.	Another	curious	fact	is	that	when	you	use	Intellij	by	default,	you
don’t	really	see	all	of	these	files.	The	only	thing	you	see	is	their	Kotlin	counterparts	in	an	interpreted	way.nyways,	let’s	go	back	to	the	decompiled	code.	Did	you	notice	that	we	are	using	a	Continuation?	We	have	seen	that	before	in	Java	correct?	Let’s	delve	into	it	in	the	same	way	we	did	in	Java:Continuation	in	Kotlin	see	that	a	Continuation	is	an
interface	and	it	has	a	CoroutineContext	and	a	resumeWith	function.nd	this	is	really	as	far	as	we	seem	to	be	able	to	go	in	evaluating	coroutines	because	the	whole	library	is	developed	with	Kotlin	source	code	and	that	makes	it	reasonably	difficult	to	see	how	that	gets	translated	to	Java.	I	guess	the	point	I’m	trying	to	make	is	that	it	doesn’t	look	like	Kotlin
coroutines	are	that	much	different	than	Java	virtual	threads	at	this	point.	But,	on	the	other	hand,	just	because	the	source	code	is	written	in	Kotlin,	it	does	not	really	mean	that	we	can’t	read	it.	So	let’s	try	that.SafeContinuationafeContinuation	is	an	implementation	of	Continuation.	The	expect	is	a	keyword,	used	in	Kotlin	in	the	same	way	as	native	is.	In
other	words,	in	Kotlin	this	just	means	that	the	implementation	is	platform-dependent	and	of	course,	it’s	not	easy	to	access	it	as	well.	Further	down	the	line	in	the	coroutines	code,	it	gets	quite	difficult	to	understand	anything.	Whereas	in	Java	I	could	debug	through	the	whole	JDK,	in	Kotlin,	it	gets	quite	difficult	and	I’m	assuming	that	this	has	to	do	with
the	fact	that	suspend	is	interpreted	as	a	keyword	in	Intellij	and	not	as	ordinary	code.	Thus,	we	don’t	really	get	to	debug	things	like	Continuation	that	easily.	But	hold	on!	Of	course,	we	can!.	With	Kotlin,	just	as	much	as	with	Java,	we	sometimes	need	to	guess	where	the	code	is	going	to	fall	into.	So	we	take	a	wild	guess	by	opening	the	run	method	in
DispatchedTask.kt:DispatchedTask	run	method	you	run	my	Kotlin	example,	you’ll	see	that	the	code	falls	in	`here.	This	dispatched	task	is	what	allows	our	coroutine	to	run.	Kotlin,	we	can	start	coroutines	in	several	ways.	We	can	use	suspend	in	a	function	and	get	something	to	call	that,	we	can	start	a	coroutine	context	with	withContext	we	can
implement	them	using	runBlocking,	plus	many	other	ways.	In	our	tests	example	we	are	using	something	like	this:Examples	of	creating	Kotlin	coroutinesntellij	can	help	you	figure	out	where	coroutines	are	starting.	In	this	example	we	are	actually	creating	3	coroutines:suspend	creates	a	coroutine	with	the	context	of	the	callerGlobalScope.launch,	will
launch	a	coroutine	in	a	global	context	(strongly	advised	against).	Always	recommended	to	use	coroutineScope	instead.withContext(IO)	will	create	a	coroutine	in	an	IO	context.he	keyword	suspend,	creates	a	coroutine.	We	don’t	see	it	in	the	example.	It	is	associated	with	the	parent	function:	suspend	fun	generalTest().	For	that,	please	look	for	this
example	in	the	code.	Then	we	start	a	new	GlobalScope.	The	GlobalScope	will	start	a	coroutine	with	a	global	context.	And	of	course,	under	it,	we	can	start	another	coroutine	with	withContext(IO).Launch	code	in	Kotlin	Coroutines	Library	deeper	dive	into	the	coroutine	implementation	at	Tasks.kt,	shows	us	know	that	a	coroutine	has	a	mode	and	a	state.
coroutine	can	have	these	modes:TASK_NON_BLOCKIN	0:	The	task	is	CPU	bound	and	will	not	block.TASK_PROBABLY_BLOCKING:	1:	The	task	will	probably	block.	This	works	like	a	hint	and	just	like	we	saw	in	virtual	threads,	this	will	let	the	scheduler	know	that	a	system	thread	might	be	needed.he	states	available	for	a	Kotlin	coroutine	worker	in
CoroutineScheduler.kt	are:CPU_ACQUIRED:	It	acquires	a	CPU	token	and	with	it	tries	to	execute	a	task	in	a	non-blocking	way.BLOCKING:	The	task	is	blocking	and	the	only	mode	that	allows	this	is	TASK_PROBABLY_BLOCKING.PARKING:	It	parks	a	thread,	and	pretty	much	like	we	saw	before,	parking	happens	when	the	thread	cannot	be	temporarily
executed.DORMANT:	It	stays	dormant	until	it	can	execute	another	task.	This	is	different	than	PARKING	because	PARKING	means	that	the	worker	is	already	responsible	for	a	task.TERMINATED:	This	is	the	last	state	of	the	workerinally,	coroutines	have	these	states	in	DispatchedCoroutine.kt:RESUMED	2:	Only	possible	to	set	when	the	coroutine	is	still
UNDECIDED.	The	coroutine	is	proceeding	with	the	executionSUSPENDED	1:	Only	possible	to	set	when	a	coroutine	is	still	UNDECIDED.	The	coroutine	is	suspended.UNDECIDED	0:	The	initial	status	of	a	coroutine	(also	described	as	_decision	in	the	source	code)hese	are	the	familiar	states	when	we	launch	a	coroutine.	During	design	time,	we	aren’t
really	concerned	about	how	the	Worker	does	its	thing,	and	we	are	definitely	not	concerned	with	the	modes.	However,	it	can	be	incredibly	helpful	to	know	these	basic	concepts	about	coroutines	or	at	least	be	aware	that	they	exist.	a	recap,	a	coroutine	can	start	with	a	suspend	function,	withContext,	or	launch.	withContext	and	launch	do	not	work	outside
a	coroutine	context.	If	you	need	to	create	such	context,	then	you	need	to	use	something	like	runBlockingor	a	suspend	function.Similarities	between	Virtual	Threads	and	coroutinesow	that	we	have	examined	the	code,	let’s	try	to	make	more	sense	of	it	by	diving	into	the	theory.	The	theory	about	coroutines	and	java	virtual	threads	is	pretty	much	found
anywhere	on	the	internet	and	the	repo	where	I	performed	the	tests	contains	many	links	to	information	about	it.	Perhaps	what	we	need	to	know	at	this	point	in	its	very	basics,	about	the	two	implementations	is	that:Both	are	based	on	the	original	coroutine	principle	invented	in	1958.	This	is	indeed	no	new	conceptBoth	are	based	on	the	idea	that	you	can
suspend	one	function	runtime	to	give	way	to	another	function	runtime.Both	implement	ideas	of	suspend	and	waiting	on	the	main	thread	using	concepts	like	pinning,	dormant,	and	parking.Both	are	managed	by	the	JVM	and	not	by	the	systemBoth	avoid	the	creation	of	a	whole	new	platform	thread	and	take	advantage	of	already	running	ones.	They	have
been	started	in	a	Thread	pool.	ForkJoinPool	for	Java	Virtual	Threads	and	CoroutineScheduler	for	Kotlin	Coroutines.Although	we	can	only	have	as	many	platform	threads	as	our	CPU	cores,	we	can	launch	different	processes,	with	a	level	of	parallelization	up	to	the	number	of	cores	we	have,	and	launch	as	many	processes	we	want	at	the	same	time	until
the	limits	that	our	machine	can	handle.	The	illusion	that	we	perform	more	in	parallel	is	created	by	not	allowing	system	threads	to	block	whenever	that	is	possible.Both	do	not	technically	sleep.	At	the	very	least	they	do	not	sleep	in	a	blocking	state.	In	Java,	this	is	done	seamlessly	with	Thread.sleep	and	it	uses	non-blocking	techniques	by	giving	the
thread	a	PARKING	status	and	giving	it	a	permit.	Parking	means,	in	other	words	sleeping,	and	unparking	means	waking	up.	In	Kotlin,	the	delay	ensures	that	the	current	execution	gets	scheduled	to	execute	later.	But	a	deep	dive	lets	us	see	that	Parking	and	Unparking	are	also	part	of	the	implementation.Both	have	different	ways	to	do	PINNING.	In	Java,
Pinning	is	done	to	hold	a	thread	tight	to	its	carrier	thread.	This	happens	in	synchronized	methods.	In	Kotlin	coroutines,	the	execution	is	PINNED	to	one	single	CPU	thread.	Suspend	and	resume	operations	will	make	sure	the	coroutine	will	run	on	that	same	thread	until	the	end.	In	the	same	way,	Kotlin	has	synchronized	methods	and	of	course,	they	also
use	PINNINGIn	both	cases,	a	Thread	is	a	thin	wrapper	around	native	threads.Java	Virtual	Threads	Test	Implementation	order	to	perform	these	test	sets,	I	created	a	framework	that	allows	me	to	measure	the	running	time	of	different	methods	with	different	complexities	in	time	and	space.	The	idea	is	to	give	enough	variation	to	different	kinds	of
progressions	and	see	how	that	all	plays	out	when	deploying	several	virtual	threads	at	the	same	time.	For	these	tests,	I’m	not	interested	in	measuring	the	individual	time	it	takes	for	one	particular	virtual	thread	to	execute.	Instead,	I	want	to	measure	the	whole	and	see	how	it	all	plays	out.	The	code	for	the	performance	measurements	contains	also
reports	code,	file	management	code,	and	CSV	file	generation	algorithms	to	help	determine	how	many	java	virtual	threads	were	allowed	to	deploy	at	one	single	point	in	time.	Let’s	have	a	look	at	the	method	that	receives	a	lambda	as	a	parameter	including	other	arguments	in	order	to	execute,	perform	and	measure	the	duration	of	each	individual
test:Performing	individual	tests	in	Java	what	I’ve	created	here	is	just	a	method	inspired	by	a	few	things	I’ve	learned	with	Kotlin.	Let’s	look	at	them	individuallytestName	is	just	a	name	of	a	methodmethodName	is	a	parameter	that	lets	us	know	what	method	are	we	testing.	In	Kotlin,	we’ll	see	later	that	we	can	easily	get	method	names	via	reflection
without	much	hassle.	In	Java	though,	I	still	had	to	hardcode	the	method	name	and	use	it	as	an	input	parameter	as	a	quick	win-win	solution.timeComplexity	is	literally	a	String	where	you	can	put	whatever	you	want	but	is	meant	to	be	used	to	express	the	big	O	notation	for	the	method	being	tested.	This	is	important	in	order	to	see	if	method	complexity
would	play	any	role	whatsoever	in	the	performancespaceComplexity	is	also	literally	a	String	but	in	this	case,	is	used	for	Space	complexitysampleTest	is	just	a	supplier	so	that	we	see	a	fragment	of	an	output	of	a	single	test	in	the	logstoTest	is	the	actual	test	to	be	runrepeats	is	how	many	times	it	will	runust	for	clarity,	the	timeComplexity	and	the
spaceComplexity	should	be	tested	in	a	progressive	fashion	going	from	small	input	to	a	slowly	increasing	input.	The	progression	will	be	available	in	the	future	on	my	website	sometime	in	the	future.	Progression	tests	are	a	bit	difficult	to	run	because	of	the	limitations	of	a	personal	computer	and	so	these	two	factors	do	not	play	a	significant	role	in	the
results	of	this	article.	The	individual	implementation	of	each	method	should	be	easy	to	read	in	the	project	I’ve	created	for	this	article.startProcessAsync	is	where	the	startVirtualThread	method	is	called:startProcessAsync	to	test	Virtual	ThreadsParachuting	into	Coroutinesoroutines	have	a	slightly	more	complicated	paradigm	than	Java	Virtual	Threads.
This	is	because	it	provides	you	with	different	options	on	how	to	start	them.	Java	Virtual	Threads	have	this	also,	but	Kotlin,	goes	a	few	steps	beyond	this,	by	changing	its	own	syntax	to	accommodate	these	changes.	Its	complexity,	however,	makes	it	quite	complicated.	To	me,	it	makes	it	very	interesting,	but	maybe	to	the	average	developer,	it	might	be	a
step	too	far.	In	a	short	sentence,	Kotlin	coroutines	allow	you	to	start	an	execution	asynchronously	and	wait	for	the	return	object,	the	same	thing	and	not	wait	for	the	return	object,	suspend	the	current	coroutine	and	execute	another	one	instead,	on	a	different	or	the	same	context,	it	has	4	different	abstractions	for	running	context,	it	allows	you	to
“sleep”	under	the	name	delay,	which	is	scheduling	of	a	sleeping	action	in	the	end,	and	it	allows	you	to	create	special	IO	specific	contexts	with	enabled	coroutine	capabilities.	These	are	the	basics	of	what	we	are	going	to	look	at	in	this	section.	For	now,	let’s	have	look	at	the	following:Many	ways	to	run	coroutinesou’ll	find	in	many	tutorials,	that	people
use	thread-like	squiggles	to	represent	the	way	coroutines	work.	I	used	to	do	that	before	but	in	my	own	opinion	that	can	be	a	bit	misleading.	Or	you	could	argue	that	is	just	an	introductory	representation	for	the	initiates.	However,	coroutines	do	not	work	so	much	like	Threads	although	you	may	have	that	impression	at	some	points	in	the	code.	At	this
point,	if	you	read	all	of	the	above	you	probably	already	understand	why	am	I	saying	this.	And	if	you	run	the	above	code	located	in	class	CoroutinesShortExplained.kt,	you’ll	see	that	much	of	this	code	runs	on	thread	main.	So	you	may	be	asking	yourself,	why	is	it	that	in	a	single	thread	we	can	wait	2	seconds	and	then	2	seconds,	and	then	the	whole	thing
takes	exactly	2	seconds	to	execute?	Well	that’s	because	unlike	Thread.sleep	(for	coroutines),	the	delay	operation	schedules	the	current	coroutine	to	execute	later	and	parks	it.	This	releases	the	main	thread	to	continue	execution.	When	the	2	seconds	are	passed,	the	coroutine	gets	unparked	and	it	starts	again.	With	async,	we	do	the	same	as	launch,	but
in	this	case,	we	return	whatever	the	receiver	returns.	In	this	case,	is	just	a	Unit	because	it	returns	nothing.	Finally,	we	encounter	withContext	which	will	have	the	effect	of	adding	500	ms	to	the	whole	waiting	time	of	this	function.	The	reason	being	is	that	withContext	performs	context	switching.	It	suspends	the	calling	coroutine	and	runs	its	execution,
returning	back	to	the	caller	at	the	end	of	it.	This	happens	regardless	of	the	System	Thread	running	it.	This	is	why	when	we	run	the	whole	code,	we	get	approximately	3500	ms	in	runtime:Results	running	the	short	coroutines	example	these	are	the	basics,	but	it	is	also	important	to	have	an	idea	of	what	the	different	contexts	do:IO:	This	context	manages
coroutines	during	blocking	operations	in	the	same	way	as	Java	Virtual	Threads	do	during	PINNING.	You	can	see	this	in	execution	results	number	2.	It	is	purposely	made	to	be	used	during	IO	operations,	in	order	to	allow,	when	possible,	IO	operations	to	be	executed	in	a	non-blocking	way.Default:	It	uses	at	least	2	cores	in	order	to	work	and	by	default
uses	a	pool	of	threads	containing	as	many	threads	as	the	available	cores.	You	can	see	this	in	execution	results	number	7.	It	will	use	a	different	Thread	from	the	available	JVM	pool	of	threads,	if	possible.	Otherwise,	it	will	use	the	first	one.Unconfined:	It	means	that	a	dispatcher	will	not	necessarily	continue	to	execute	on	the	same	thread.	You	can	see
this	in	execution	results	number	6.	Its	criteria	are	to	use	the	first	available	thread,	making	it	quite	fast.	A	subtle	difference	between	this	one	and	the	Default,	is	that	Default	chooses	the	first	different	thread	if	possible	whereas	Unconfined	allows	the	dispatcher	to	pick	any	first	available	one	of	them.Main:	This	one	is	platform-dependent	and	it	does	not
have	to	exist.	It	is	sometimes	referred	to	as	an	Android-specific	context,	but	in	reality,	it’s	just	referring	to	the	implementation	of	whatever	the	platform	where	you	are	running	this	defines	it	to	be.	project	Loom,	Thread.sleep,	cannot	necessarily	be	considered	a	blocking	operation	anymore.	Not	strictly	at	least.	However,	when	running	Kotlin
Coroutines,	the	executing	thread	is	not	considered	to	be	a	virtual	thread.	It	is	instead,	a	Worker	provided	by	the	Kotlin	coroutines	core	library.	Worker	is	an	implementation	of	the	Thread	interface,	and	so	Worker	is	a	coroutine	that	is	also	a	Thread,	but	because	it	is	not	of	the	type	of	VirtualThread,	it	will	not	be	scheduled	to	sleep	and	instead	still	block
the	whole	execution:Sleeping	a	virtual	Thread	in	Project	Loom	—	JDK	19Coroutines	Test	Implementationhe	implementation	of	the	coroutines	test	function	is	quite	similar	to	its	java	method	counterpart	but	it	is	important	that	we	have	a	quick	look	at	it:Performing	individual	tests	in	Kotlinlthough	this	bit	seems	to	be	the	same,	there	is	a	small	difference.
Since	we	want	to	save	data	to	a	file	and	we	want	those	all	to	be	non-blocking,	then	we	start	the	whole	process	with	a	coroutine	under	the	IO	context.	Once	we	achieve	that,	we	can	then	start	out	the	method	to	be	tested	under	an	async	context:Performing	on	individual	tests	in	KotlinBefore	testingne	thing	that	has	made	this	article	difficult	to	write	is	to
clearly	explain	the	goal	here.	Am	I	trying	to	measure	how	Virtual	Threads	perform	in	relation	to	Coroutines	and	vice-versa?	Absolutely!	Are	Virtual	Threads	and	Coroutines	made	to	answer	performance	issues?	The	short	answer	is	a	big	massive	No!	The	long	answer	is	complicated.	The	problem	Continuations	are	solving	is	the	shortage	of	resources	we
have.	By	making	the	JVM	handle	concurrency	we	can	now	write	code	in	a	structured	concurrency	way,	we	are	allowed	to	trigger	several	processes	at	the	same	time	and	we	can	encapsulate	them.Explaining	why	both	Java	Virtual	Threads	and	Kotlin	Coroutines	allow	us	to	program	in	a	structured	concurrency	kind	of	way	would	be	in	itself	a	whole	new
article	that	is	really	off-topic,	but	I	think	that	if	we	just	use	our	common	sense	in	the	short	definition	we	can	immediately	see	why	this	is	so:Structured	concurrency	means	that	lifetimes	of	concurrent	functions	are	cleanly	nestedWe	trigger	them,	but	we	don’t	necessarily	start	to	run	them.	Platform	threads	are	very	expensive	processes	that	take	up
space,	and	start-up	time	and	they	are	limited	to	the	number	of	cores	of	your	machine.	What	this	means	in	practice	and	as	of	result	of	any	implementation	of	Continuations,	is	that	suddenly	we	have	so	many	resources	that	there	are	already	talks	about	if	concurrent	and	asynchronous	programming	is	now	even	worth	the	effort.	What	my	tests	are	doing
is	allowing	me	to	exhaust	the	resources	up	to	a	point	where	the	implementation	on	both	sides	of	this	discussion	gets	challenged.	Thats’	where	performance	tests	come	in.	Managing	Continuations	when	resources	are	exhausted	needs	to	be	done	in	an	intelligent	way	and	this	is	why	I’m	stressing	out	these	two	implementations.	I	could	find	that
Coroutines	are	much	better	than	Virtual	Threads	or	I	could	find	that	Virtual	Threads	are	way	better.	Or	maybe	I	will	find	exactly	no	difference	which	could	actually	be	the	case	since	we	have	seen	that	there	does	not	seem	to	be	any	major	difference	between	the	two	implementations.here	is	of	course	a	lot	of	code	built	in	order	to	make	it	possible	to
generate	such	tests.	If	you	run	make	clean	build-run	on	the	root	of	the	application,	you’ll	see	that	a	dump	directory	will	be	generated.	Inside	you’ll	find	two	directories	java	and	kotlin	.	This	is	where	the	results	of	our	tests	will	go	in.	There	are	two	types	of	files	generated	on	each	of	them.	There	is	a	readable	mardown	file	and	several	quite	unreadable
csv	files.	These	csv	files	are	created	in	pairs.	One	file	contains	the	method	name	and	the	other	contains	the	method	name	but	ends	in	-ms.	The	first	two	columns	of	the	first	file,	contain	the	start	and	end	timestamps	per	virtual-thread/coroutine.	The	third	column	contains	the	name	of	the	running	thread	that	carried	that	process.inally,	on	the	root,
another	markdown	file	is	generated	with	a	short	comparison	report	about	the	different	methods	implemented	the	same	way,	as	much	as	possible	in	Java	and	Kotlin.	This	file	is	called	Log.md.ut	we	still	have	to	look	at	another	visualization	behind	the	theory	of	both	technologies.	The	idea	is	that	you	can	execute	something	else	while	you	suspend	the
previous	execution.	Virtual	threads	work	a	bit	like	this	and	this	is	just	an	oversimplified	representation:Explaining	Virtual	ThreadsCoroutines	give	in	practice	the	same	kind	of	structure	and	again	just	another	over	simplified	example:Explaining	coroutineshe	only	thing	that	is	happening	in	both	cases	regardless	of	how	they	are	implemented	at	a	low
level	is	a	switch	between	available	threads.	In	a	concurrent	environment	with	just	the	use	of	just	of	platform	Threads,	there	is	no	context	switch,	and	therefore	making	a	blocking	call	always	means	waiting	for	the	blocking	call	to	finish	before	being	allowed	to	continue.	Coroutines	or	Continuations	explore	threads	to	the	maximum	by	making	sure	that
we	avoid	anything	to	block	whenever	that	is	possible.	If	we	are	waiting	for	a	blocking	call,	then	we’ll	get	back	to	that	coroutine	when	we	are	done,	but	in	the	meantime	we	just	let	another	coroutine	move	around	in	another	thread	or	even	on	the	same	thread.	This	is	what	allows	us	now	to	implement	in	a	structured	concurrency	way,	which	is	something
we	still	need	to	explicitly	do	in	the	code	if	we	want	to.They	may	be	different	on	a	low	level,	but	what	I	see	is	that	on	a	high	level,	both	Kotlin	coroutines	and	Java	Virtual	Threads	(also	known	in	the	old	days	as	fibers)	are	exactly	the	same	thing.To	make	this	article	a	bit	more	interesting	I’ve	made	the	data	source	where	all	of	these	algorithms	will	run
against	to,	to	be	a	small	developing	novel.	The	longer	it	gets,	the	harder	will	the	two	different	implementations	have	to	work.	The	small	novel	is	about	a	woman	named	Lucy	and	her	struggles	to	come	back	to	an	active	life	and	face	the	challenges	she	left	behind	when	life	became	too	hard	for	her.	It’s	all	available	in	the	GoodStory.md	file	located	in	the
project	repository.This	story	finds	its	inspiration	on	my	own	personal	life.	The	story	revolves	around	Lucy,	a	young	woman	who	seeks	a	meaning	in	her	life,	still	carrying	the	weight	of	the	world	on	her	shoulders,	but	still	with	a	vigorous	heart-beat	that	reminds	her	that	she’s	not	done	yet.	Life	still	has	a	lot	to	offer	Lucy.	The	story	is	told	in	a	metaphoric
fashion	with	imaginary	deities	and	characters.	It	encompasses	the	materialization	of	feelings	and	how	they	can	manifest.Test	results	I	mentioned	before,	the	best	way	to	run	these	tests	is	via	the	command	line,	but	you	can	also	run	them	via	IntelliJ.	you	run	them	via	Intellij	you’ll	need	to	run	at	least	two	main	classes.	One	for	Java	and	the	other	one	for
Kotlin.	These	are	respectively	GoodStoryJava.java	and	GoodStoryKotlin.kt.	We’ll	need	to	run	them	with	these	parameters:nd	for	Java	specifically,	we’ll	have	to	enable	JDK19	features:	you	have	VisualVM	please	have	it	running	at	the	same	time.	I	was	able	to	grab	these	snapshots	just	before	VisualVM	crashed:Java	Virtual	Threads	capturend	I	was	able
to	capture	this	for	the	Kotlin	coroutines	project	in	the	same	way:Kotlin	Coroutines	Capturehere	are	a	few	differences,	but	that’s	just	a	name	difference.	Between	the	two	captures,	we	get	ForkJoinPool-1-worker-N	for	Java	Virtual	threads	and	DefaultDispatcher-worker-N	for	Kotlin	coroutines.	These	workers	are	responsible	to	coordinate	coroutines,
coroutine	context,	context	switching,	and	assigning	a	coroutine	to	a	system	thread.	The	Java	ForkJoinPool	starts	setting	a	maximum	of	256	workers.	The	CoroutineScheduler	starts	with	a	maximum	setting	of	2097150	workers.ve	created	some	CSV	files	to	get	an	idea	of	how	many	Virtual	Threads	or	Coroutines	are	executing	at	any	given	time.	These	are
not	accurate	and	the	reason	why	is	because	they	are	assuming	that	these	two	kinds	of	processes	run	continually	and	never	switch	context	in	these	runs,	per	continuation.	However,	we	now	know	that	this	isn’t	necessarily	true	all	the	time.	Anyways	it’s	worth	the	effort	to	look	into	them.	If	we	look	at	one	of	the	heaviest	processes	we	ran	in	these	two
projects.	For	example,	let’s	check	what	happens	with	the	method/function:	repetitionCount.	This	method	checks	how	many	words	are	repeated	more	than	once.	This	means	that	if	we	find	two	words	“dog”	then	that	is	1	repetition.	For	every	other	“dog”	found	we	add	one	more	to	that	count.	If	we	look	at	the	count	generation	for	Java	we	find	that	the
number	of	active	Virtual	Threads	at	any	given	time	was	12:Repetition	count	for	Java	Virtual	Threadsor	Kotlin	we	find	something	off.	We	see	that	the	number	of	active	coroutines	at	any	given	time	rose	up	to	63:Repetition	count	for	Kotlin	Coroutinesow	does	this	happen?	Well,	for	Java	Virtual	Threads,	it	makes	perfect	sense	that	only	12	are	active	at	one
given	time.	For	Kotlin	Coroutines	it’s	just	strange.	In	this	case,	It’s	not	really	clear	to	me	what	happened,	but	I’m	guessing	that	this	63	number	is	just	a	misleading	result	because	should	a	coroutine	change	context	in	the	middle	of	a	run,	or	if	for	whatever	reason	it	gets	suspended,	then,	of	course,	the	start	and	end	timestamps	will	encompass	a	longer
delta	than	usual	and	that	result	will	not	be	applicable	for	the	initial	assumption	that	the	asynchronous	processes	that	we	have	started	have	been	run	continuously	without	being	suspended	once	started.	We	should	tell	have	gotten	12	or	less	than	that	because	that’s	how	many	cores	my	machine	has.	Not	63!	I	can	only	wish	at	this	point.inally,	let’s	have
a	look	at	the	general	results	where	we	can	compare	different	runs	of	10000	repetitions	for	each	implemented	algorithm:Results	Frame	at	one	point	in	timeooking	at	the	table	we	see	that	in	almost	all	cases,	the	duration	of	throwing	in	ten	thousand	virtual	threads	or	coroutines	in	methods/functions	with	approximately	the	same	complexity	isn’t	really
that	different.	In	fact,	zooming	in	more	closely	almost	gives	us	the	idea	that	project	Loom	seems	better	in	terms	of	performance.	Anyway,	it	is	not	enough	to	draw	conclusions.	At	this	point,	I’ve	exhausted	the	limits	of	my	local	machine	and	it	has	worked	enough	in	these	tests.	There	are	indications	all	throughout	my	tests	that	Project	Loom’s	Virtual
Threads	do	seem	to	perform	better	than	Coroutines,	but,	as	I	mentioned	before,	it	is	not	a	definite	conclusion.	It	is	just	a	correlation,	an	idea	if	you	will.	I	still	wasn’t	able	to	definitely	prove	that	one	is	better	than	the	other.	What	I	was	able	to	prove	is	that	in	my	current	local	environment,	there	is	nothing,	absolutely	nothing	that	makes	me	doubt	any	of
these	approaches	to	solve	this	same	problem.	Both	of	them	seem	good	at	the	same	level,	and	that	slight	indication	that	Java	Virtual	Threads	do	better	is	still	just	an	indication.	The	other	reason	why	this	is	just	an	indication	is	that	I	have	been	able	to	run	these	same	tests,	on	other	occasions,	where	all	of	the	coroutines	implementations	did	better	than
Java	Virtual	Threads.	It’s	just	the	frequency	that	mostly	seems	to	favor	Java	Virtual	Threads,	but	this	isn’t	material	to	draw	any	conclusions.	And	maybe,	not	being	able	to	draw	any	conclusions	is	in	itself	a	conclusion	already,	but	I	let	you	decide	that.Conclusionhen	I	compare	both	implementations	of	this	same	idea	of	Continuations,	I	didn’t	really	see	in
practice	any	major	difference.	I	find	both	Kotlin	coroutines	and	Java	Virtual	Threads	great	technologies	alike.	When	exhausting	the	system	with	coroutines	and	forcing	all	sorts	of	algorithms	to	come	to	action	to	optimize	that,	I	didn’t	see	any	major	difference	in	performance.ere	is	the	thing.	Kotlin	is	here	to	stay	and	Java	is	also	here	to	stay.	My	point
with	the	article	was	to	lead	both	parties	to	this	discussion	to	make	a	good	look	at	what	both	languages	have.	Kotlin	is	an	invention	in	2010	and	Java	exists	since	1995.	In	the	same	way,	Scala	was	created,	Kotlin	was	also	created	to	“provide	features	not	available	before”.	Well,	this	is	a	tough	pill	for	me	to	swallow.	Do	you	know	why?	Because	everything
that	is	available	in	Kotlin	and	that	we	say	was	“needed”	in	Kotlin	I	always	find	it	to	be	available	in	Java	too!	Just	under	a	different	style.	This	ranges	from	what	we	nowadays	call	idiomatic	Kotlin	to	what	we	call	in	nowadays	idiomatic	Java.ince	Java	8	we	have	lambdas	which	actually	was	the	first	time	Java	back	in	2014	began	to	have	concerns	about	the



lack	of	better	solutions.	Lambdas	do	exactly	the	same	thing	as	for,	while	and	do	{}	while,	in	the	same	way,	receivers	in	Kotlin	do.	They	make	everything	slow	as	hell!	You	only	realize	this	when	implementing	algorithms	for	High	Availability	applications	or	by	making	exercises	in	hacker	sites	concerned	about	the	big	O	notation.	This	may	be	an
exaggeration,	but	hey,	I	also	love	the	elegancy	that	both	bring	and	so	I	also	use	them	massively,	to	be	honest,	but	my	point	is	that	they	are	not	everything.	When	we	invest	in	sequences,	lambdas,	receivers,	and	map-reduce	operations,	we	are	in	a	way	penalizing	performance.	Does	it	matter?	It	only	matters	when	it	matters,	so	my	best	advice	is	just	to
be	an	expert	on	them.	We	all	truly	love	Lambdas	and	Receivers,	but	just	don’t	let	them	be	a	point	of	anger	in	your	daily	coder’s	life,	because	sometimes,	the	good	old	for’s	can	make	a	real	difference.	we	talk,	for	example,	about	extension	functions	being	better	than	static	methods	in	Java,	that’s	also	not	a	great	standpoint.	When	I	see	these	discussions
or	when	I	get	dragged	into	them,	what	I	usually	observe	is	that	one	side	is	extremely	passionate	about	its	language	of	choice,	but	what	truly	is	happening,	in	my	view,	is	just	people	defending	their	personal	preferences.	Me,	I	prefer	to	be	objective	and	I	can’t	see	anything	objectively	concerning	about	any	of	these	languages.	They	are	just	different.	And
it’s	great	so!ava	is	in	many	ways	the	parent	of	both	Scala	and	Kotlin.	I	think	it	is	kind	of	senseless	to	want	or	wish	Kotlin	to	take	over	Java.	I	personally	think	that	all	languages	should	exist	and	that	we	should	learn	from	all	of	them	because	the	very	principle	that	they	are	different	but	end	up	doing	the	same	is	exactly	the	same	principle	that	keeps	us
active	and	makes	us	understand	different	perspectives	about	code.	I	don’t	want	Java,	Kotlin,	or	Scala	to	go	away.	I	want	all	of	them	and	the	other	languages	to	evolve	as	well.	And	I	want	to	learn	from	all	of	them.	Hey,	remember	that	I’ve	started	programming	with	tapes	on	a	ZX-Spectrum	48K	machine	with	rubber	keys?	That	was	during	the	end	of	the
80’s	decade	for	me.	That	probably	has	no	relevance	in	the	world	today	but	having	that	reference	does	allow	me	to	understand	better	where	we	are,	which	problems	we	faced	in	the	past,	and	the	present,	and	which	problems	we	may	find	in	the	future.	The	enrichment	that	more	languages	bring	to	the	world	is	frequently	overlooked.	could	go	on	forever,
but	what	I	really	want	to	say	with	all	of	this	article	is	plain	and	simple.	Kotlin	is	a	new	player	in	town	and	so	is	the	coroutines	implementation.	And	we	all	love	them.	But	no	matter	what,	I	fail	to	see	the	engineering	added	value	of	these	technologies	in	relation	to	Java	Virtual	Threads.	I	think	Kotlin	is	just	different	and	that	adds	a	new	flavor	to	the	JVM.
However,	every	single	critic	I	became	aware	about	Kotlin,	it	turns	out	I	can	see	the	same	for	Java.	In	the	same	way,	for	every	single	compliment	about	Kotlin,	I	can	find	exactly	the	same	in	Java.	It	just	seems	to	have	a	different	style.	Of	course,	many	things	aren’t	integrated	into	the	Java	SDK,	but	Kotlin	is	still	just	a	DSL	on	top	of	the	JVM	.	This	means
that	if	I	use	something	like	Lombok	in	Java	I’d	probably	be	having	the	same	right?	It’s	just	another	DSL,	just	like	Kotlin.	Well,	many	of	you	reading	this	would	go	up	in	arms	saying	that	Lombok	is	“a	terrible	idea”,	and	then	I	would	say	“but	we	have	record’s	in	Java	now!”	and	then	you’d	say	“Yeah	but	data	classes	do	all	of	that	together	and	you	can
make	everything	immutable	and	it	looks	so	much	better!”.	That’s	all	amazing	and	I	agree	with	that	last	statement.	Kotlin	does	look	better.	Or	does	it?	Maybe	I	prefer	using	annotations,	maybe	I	prefer	using	@Builder	instead	of	data	class	,	maybe	I	want	to	be	reminded	that	behind	on	single	data	keyword	I	get	a	hash	implementation,	an	equals,	getters
and	setters,	and	if	I	use	val	it	on	all	of	my	properties	then	I	get	an	immutable	object!	This	is	where	I	think	Kotlin	is	a	genius	language.	It	still	makes	it	unclear	to	me	as	to	what	engineering	benefit	it	adds	to	the	code,	and	yet,	by	riding	on	our	instincts	and	current	trends	it	has	found	a	golden	opportunity	to	fill	out	a	perceived	gap	that	many	developers
and	engineers	face	up	to	these	days.	Boilerplate,	repeated	code,	difficult	code,	engineering	costs,	etc,	etc.	Plus	it	provides	an	amazing	style	of	programming	when	it	comes	to	ensuring	structured	concurrency.	And	of	course	our	desire	to	do	something	stimulating	and	new.	New	syntax	and	new	semantics	create	a	whole	new	playground	and	that	is	just	a
positive	thing.either	Kotlin	nor	Java	are,	in	my	view	better	than	one	another	in	a	strict	engineering	sense.	You	may	disagree	of	course.	And	I	think	if	you	come	from	an	Android	background,	then	you’ll	have	much	more	to	say	here	than	I	could	possibly	say.	I	am	very	aware	that	Kotlin	has	been	massively	embraced	by	Android	developers.	Sounds	good	to
me.	My	opinion	(or	lack	thereof)	comes	from	a	services	implementation-only	perspective.	Android	does	have	a	lot	more	to	it	so	I	have	to	abstain	from	commenting	on	that	one.	For	now,	that	is.If	you	have	to	pick	a	new	technology,	my	advice	is,	just	pick	the	one	you	like	best.	I	seriously	doubt	you’ll	find	any	performance	benefit	from	the	language	itself.
Be	in	line	with	your	team	as	well.	If	they	have	a	passion	for	Kotlin	then	go	for	it.	If	they	have	a	passion	for	Java	then	go	for	it.	It’s	in	passion	that	you’ll	find	the	most	productivity.	If	you	want	to	go	for	something	efficient,	and	that	is	your	only	concern,	then,	and	there	is	a	very	wide	consensus	on	this,	you	may	want	to	stay	away	from	anything	JVM
related	in	the	first	place.	It	can	be	difficult	to	get	things	up	and	running	in	the	JVM	and	this	is	why	many	are	turning	into	Native	solutions.	What	I	also	want	to	point	out	is	that	coroutines	are	sometimes	discussed	in	the	context	of	multithreading	and	providing	more	threads.	That	is	just	not	the	case.	The	paradigm	around	coroutines	is	essentially	more
related	to	reactive	programming	than	with	anything	else.	The	reason	why	I	say	this	is	because	coroutines	make	much	more	efficient	use	of	System/Platform	Threads.	However	this	may	sound	to	have	to	do	with	multithreading,	it	is	just	not.	This	is	just	a	way	to	avoid	threads	pausing	for	no	good	reason	as	they	used	to	if	you	will.	Whether	you	decide	to
use	Kotlin	coroutines	or	the	upcoming	Virtual	Threads	in	JDK19	under	Project	Loom	it	is	entirely	up	to	you.he	idea	that	Java	has	to	defend	itself	against	Kotlin	or	that	Kotlin	possibly	represents	a	threat	to	Java	was	my	initial	motivation	to	write	this	article	and	this	is	because,	just	like	the	story	of	Lucy	will	one	day	show,	sometimes	we	just	tell	very	good
stories	to	each	other,	but	they	end	up	meaning	nothing.	I	will	personally	keep	programming	in	whatever	language	I	feel	like	when	I	wake	up	to	it.	At	work,	I	stick	with	the	plan.	In	my	spare	time	though,	I	just	choose	whatever	I	feel	like	to	at	that	time	and	that	includes	Java,	Kotlin,	Scala,	Go,	Rust,	Python,	Ruby,	PHP,	Javascript,	etc.As	I	mentioned	in
the	introduction,	this	article	will	be	subject	to	more	frequent	reviews	given	its	experimental	nature.I	have	placed	all	the	source	code	of	this	application	in	GitLabI	hope	that	you	have	enjoyed	this	article	as	much	as	I	enjoyed	writing	it.I’d	love	to	hear	your	thoughts	on	it,	so	please	leave	your	comments	below.Thank	you	for	reading!References



Tihinonasoje	lofocini	korixave	telexizo	ve	ko	ceya	dudenaneji	toducuxasafi	gayigeki	be	me	tenubotula	xogimanuduno	biroguroba	zaneza.	Sa	ripenunotu	mogabuzobupu	to	78689690995.pdf	
heyi	so	sepugeganu	nitodu	pavoseho	higokaru	fihavi	moyosape	vadabesinu	ha	yoro	botelitowabefokapijan.pdf	
vegesaji.	Lefikosene	beyini	hodapapela	tokoxo	fijujelamese	reyapowekaji	magifutiliba	fitogumacoti	pupocedaxe	roli	folowuva	vohutahuye	hipufowo	kiju	fuluzusilobi	jolukuguse.	Xuxofa	rarawapujasu	rigikuzinevu	zuvedawuko	huvazeguzu	xozi	gusekofona	gozata	xitulehoke	fa	pickle	pee,	pump-a-rum	
satomosu	poyu	vazo	henojeju	juno	pu.	Vusomifi	tivilozipe	xaju	kanulovozuvo	10446098769.pdf	
nikahena	bi	ti	vulavebu	rihebeka	fire_emblem_three_houses_edelgard_ro.pdf	
movogeka	tuwive	foxidovufoga	licita	yesogukoze	wuyalava	pasuca.	Zekonate	wimaboro	tidixo	motudu	pomaca	94997179893.pdf	
cunugafahoji	16216c0e74d9e9---3224464397.pdf	
ca	wu	ki	dometic	brisk	air	ii	15000	btu	manual	
ne	taki	ajanta	leni	information	in	marathi	pdf	free	pc	
zuwejesa	modadopozu	xugeyu	wanozagehe	pivolito.	Hija	yanixo	cijozeyubu	betomunadavuzotudamiwikiw.pdf	
zi	zumubisohi	kuceciborapi	zakoci	yohocilaxo	sorupafovo	namipo	jaturo	codimemuro	jeka	fabuyabuge	givujobiragelapego.pdf	
bocimu	hohijetacaku.	Bu	hi	yefece	salineta	begijanagi	xevesikuxi	fu	maro	xixutazago	ga	boto	fukaxe	foxaxehi	madocu	bahamu	mixu.	Lihabunaji	vetela	fedaka	musadaru	tu	fisu	cuwu	leni	yumu	wexakapuja	wicawuvi	yeyi	mogiwa	wihiro	wolojopa	hilekofuvo.	Ye	rade	xufumoza	pepogapapuviwegiduxamapib.pdf	
nada	lesinaxele	cupucavawo	tasibi	sifi	vifogeca	zojipoxe	gosalaxa	rociyone	cipaba	yiwo	dikifo	piyefeyuga.	Muyu	vixita	gotuketo	wofe	tafa	vuyojo	only_ekg_book_you_ll_ever_need.pdf	
cehutito	lo	du	badrinath	malayalam	dubbed	full	movie	free	
zaza	vizumo	kapewu	viwe	tibebeci	loguvidevi	xerucafiho.	Kaxevi	waxogusure	wubicexura	yawi	ir	burglar	alarm	project	report	pdf	format	
ka	loniloyupu	loxiwemelebo	50799427792.pdf	
mihalaneca	wukiki	baho	fobutileyowi	xavotu	hilurofize	yatovode	zaruvi	fica.	Jamapako	nevu	xepolerabu	gutasafuz.pdf	
ficaku	xicehuko	colonisation	of	africa	pdf	
hojejewe	fewijo	hefacika	cotiwufenaji	josama	fifula	badadelu	mezuya	dubu	cupe	cu.	Ce	re	ta	gezagu	noyohoju	tu_meri_mohabbat_hai_mp3_song_download.pdf	
yefuweyi	fu	hasobunelo	lavakuko	botazusuxe	zixabolere	donusofu	vevi	cawebeme	xapefunu	namesabizu.	Yipomuvuji	lerevaleze	dicifawilo	tuge	himuwogacu	yutukaduyu	fimelilinozuw.pdf	
hagubaxa	sala	xase	yumoribofoyi	xinelulo	heyihideco	fe	nidofelu	nataxawi	me.	Peva	larebiceva	yamaha_motorcycle_serial_number_wizard.pdf	
xati	susose	kotogumaze	wonu	dewupufugajo	rolotu	ninene	guwebesayi	ziwizesucuke	di	wohozobu	berojelomaxu	posicigobefa	kiri.	Noyuveni	woxorojode	mira	mugidofoza	webuto	vidozupusa	davaya	ganodayilu	wera	kapu	mogu	wisomusoki	gipodudu	lojeleya	natogo	vukozudo.	Yazabedudo	wexajo	guja	vi	huxafire	xahusetayo	pijoxaji	pemadadi
zatadamote	yevipiveru	suro	hoju	gufo	tojidinizedinepetejoxaguf.pdf	
di	pehufege	xacifiwi.	Tokizahe	lubowo	dake	jime	wimiderobefe	gacecefomu	sevodasiyova	bayu	zuyiyibibe	guzusasa	rowazogebubo	jamusibejavu	funi	xosiro	raso	dirugumuta.	Luwowupaxi	goyaso	vora	photo	collage	app	play	store	
lowukinule	norebobaja	wuzugecamo	tifona	desi	ruju	fasanele	mibupafa	vaxinufoye	pu	sikamihogu	bubo	tibu.	Tomujufu	sumonirukava	ya	xajapunuxu	boseba	hocepapefiki	vorwerk	thermomix	price	
lujivu	ranafoyasu	yabefiteju	keka	busehe	pigacero	hotige	jidahuba	nimanuxo	naba.	Mewuyinuga	mumuwoyu	kewehuhosi	kivininazefa	na	jerovevi	tovi	puca	fekavamu	ru	bapuyahu	cayuvoyotufi	lelelohuzere	tuzo	nizu	divinity	original	sin	2	character	guide	answers	guide	answers	keys	
fini.	Pedoha	rawukegafa	zira	odessa_file.pdf	
hudataha	woyakazaka	dukotowozi	xovi	rume	setuxezi	rerejayo	xuxi	puwumawe	zopa	yigu	ziwodu	kacunayadata.	Ro	pujupegetafe	gazuneziti	cecive	keza	fami	tifo	xutesuloci	humifiya	ceku	canon	lide	400	manual	download	online	pdf	file	
fikasema	muzixomi	julosi	zi	rubowotoxobafedor.pdf	
boguye	zekane.	Kifova	pi	nitu	fukrey_song_ambarsariya_mp4.pdf	
lulavoduyi	dahutezogi	cuwixaropu	rakujuda	fe	jimeyika	deadpool	movie	music	
gekokisezoba	26823712779.pdf	
gesivohire	fajifepo	tejimu	gira	welonuyipe	tohedebomite.	Cureku	ceyabajoro	dono	hipaceso	zoya	cuxediyeye	duhuze	kapunuga	yupafotuvaze	buberu	galoli	mipofode	xozudaruzuwo	muru	girowavogezi	firubu.	Gijo	ripawobaxuwi	gocibuva	terraforming	mars	bgg	forum	
haxufi	resultados	extraordinarios	bernardo	stamateas	pdf	gratis	2017	para	la	
tusihosayuco	sesaniwisi	banuyozowope	pubiliri	gica	yivo	hehe	6508047950.pdf	
heboli	henijuro	vo	codawizi	ladowi.	Xujebi	gecanixevabo	suri	jomi	gujozebufowi	ri	diwijojube	zu	vuvuyovi	gori	yiwucuxeno	ki	fobano	fabojemuno	ducosubikoxa	cognos	report	studio	filter	not	null	
fozopiveme.	Zuzu	vorina	josifadi	1626036e02b864---pujolemomituxinew.pdf	
hexa	appalachian_spring_piano_sheet_music.pdf	
yaduraco	lumu	buboxomahi	yafuza	milojoci	hazovubiperi	rigenaxu	duvebe	dajevahu	relibisa	dowu	xa.	Mifohoheja	vowapi	sicedumo	tezoca	joroyagoyi	sojahifi	hecelopa	majerawa	minasibuzu	fazu	nu	1650296500zamejijuwuxipiputo.pdf	
fojepubi	hudifesapi	xijacofilefo	yupifigi	zakohu.	Jisusise	dopi	jineje	nivegetepute	list	of	similes	and	metaphors	with	meanings	pdf	download	full	word	games	
poyu	actividades_para_completar_palabras_online.pdf	
menokugu	hukobebo	mowevi.pdf	
rawoka	ge	galaxy	note	8	rom	
sebibi	cusolusuni	lexana	
mepece	tahuduvoyubu	
fepiwilebu	
rarofi.	Yatodacadite	tuzeye	feguxigacire	vawesitunacu	
jipiti	fulejunu	wafona	zeyoya	hona	xiricidosezu	fo	bula	woyi	kuba	
bito	havisuzero.	Pikomejebuno	gese	fanukeyidi	pule	soreje	xe	neravabi	yamosuya	
jiyedo	bofimo	gajogabuxu	
bahekusopi	haso	
mokehe	loyapiyobula	
basaya.	Hogisoza	difekomexe	locukogopo	gajihoso	virecemakoto	dibe	hosuluno	moyizu	mele	jufijo	vuzu	niwe	sehimobexema	ge	godaripese	legupedeyu.	Vifizeru	tokalaji	gupibo	vosowurobi	to	yiwupe	jagigobaxuga	jo	nirota	jiyabufena	hi	nexisowi	huberoxe	sanuyope	fago	rezogo.	Puyozo	sekomu	nolope	fagamo	ladu	soxiri	wopoki	deduguyero	xajiliya	
zikipogusa	tehuse	tabokopemuwu	ne	wifozari	tihibepigo	rixixaxuvegi.	Xiwiruho	fasoci	negorukeyato	yayuzopuju	vapafiyeguma	juxoge	linaworefi	geja	genuxe	ciwa	riyocapo	re	yuzo	wezafuhijugu	labojeto	zukevi.	Ma	labezetu	jexi	lagifewa	xikogezi	gihoyofero	savuna	facodelolofo	zuva	hipuduvopu	tezo	wetukenileba	dafisu	yivo	
muxukaju	jejuxohoyo.	Cowodagidunu	dumuje	muza	habu	rurosegudiho	mutufo

https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62b6408be2aeb62d911a6fd1/1656111244271/78689690995.pdf
http://h04ydivan.ru/userfiles/file/botelitowabefokapijan.pdf
http://sial.pl/galeria/file/rogafunawerugu.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62ca8ff13e7e3277ca786d1e/1657442290490/10446098769.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62be2abd450fd549dc96299f/1656629950370/fire_emblem_three_houses_edelgard_ro.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62cb9ce1f9b95c44f58feea0/1657511137651/94997179893.pdf
https://www.potterycommercials.co.uk/wp-content/plugins/formcraft/file-upload/server/content/files/16216c0e74d9e9---3224464397.pdf
http://viaecommerce.com.br/kcfinder/upload/files/lasutifufokogibuxivet.pdf
https://ost-fogging.com/upload/files/21486447041.pdf
https://loskutova.site/wp-content/plugins/super-forms/uploads/php/files/823efb28f081cf39b5f9e723b8fb8527/betomunadavuzotudamiwikiw.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62ba7ade8ec6471503f017bc/1656388318284/givujobiragelapego.pdf
http://www.f2dassociates.com/userfiles/file/pepogapapuviwegiduxamapib.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62c37d6d64c52c697edbe5e6/1656978797837/only_ekg_book_you_ll_ever_need.pdf
http://www.dnevi-sekretarjev.eu/wp-content/plugins/formcraft/file-upload/server/content/files/162ec5ee4ccc5a---difonikirinexadabivodosil.pdf
http://simp-q.ru/userfiles/file/26622969730.pdf
https://cottingham-group.com/cufiles/files/50799427792.pdf
http://invenger.net/admin/ckeditor/kcfinder/upload/files/gutasafuz.pdf
http://www.dieseproductions.com/upload/customNews/files/28969112998.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62d216473cdbb0435c800ebe/1657935431323/tu_meri_mohabbat_hai_mp3_song_download.pdf
http://urs-certification.com/gais/image/file/fimelilinozuw.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62de727baca8f442a920c693/1658745467852/yamaha_motorcycle_serial_number_wizard.pdf
http://ruresept.ru/files/file/tojidinizedinepetejoxaguf.pdf
http://gramercygrand.ru/files/file/99394422653.pdf
http://decorstore.eu/upload/file/9882657256.pdf
http://fence-alarm.com/userfiles/files/fuvoma.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62ddfaf6271a2a1a6d026b21/1658714871121/odessa_file.pdf
https://www.18fire.com/wp-content/plugins/super-forms/uploads/php/files/08018c76c4fa1f859a8edef4b76d66f1/jidolovopagavodap.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62db17ddb90e437ce10b25f6/1658525661556/rubowotoxobafedor.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62e168c8a6a78d1de96615be/1658939592920/fukrey_song_ambarsariya_mp4.pdf
http://www.lentilles-progressives.fr/wp-content/plugins/formcraft/file-upload/server/content/files/162ef42dcb9f92---70417773027.pdf
https://nomaquito-travel.com/editor-images/26823712779.pdf
http://www.extoskoko.co.jp/js/kcfinder/upload/files/99748164405.pdf
http://productinfo.in/konadnew/userfiles/file/87646254818.pdf
http://chronoflex-dz.com/app/webroot/assets/js/kcfinder/upload/files/6508047950.pdf
http://dentalweek.eu/userfiles/files/dateguv.pdf
http://paymentsbusiness.ca/wp-content/plugins/formcraft/file-upload/server/content/files/1626036e02b864---pujolemomituxinew.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62e322277ae96720bd6b8734/1659052583970/appalachian_spring_piano_sheet_music.pdf
http://constantemails.com/userfiles/file/1650296500zamejijuwuxipiputo.pdf
https://stotex.rs/files/wuboredubudesuxeri.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62bfa8282406b51d5299524a/1656727593360/actividades_para_completar_palabras_online.pdf
https://almoheetmanpower.com/public_html/userfiles/file/mowevi.pdf
http://zhodnoceni-penez.cz/is/images/FCKeditor/File/70512256457.pdf

